pytorch的colorjitter(pytorch.colorjitter...)

wufei1232025-02-15python11

给我买咖啡☕

colorjitter()可以随机更改图像的亮度,对比度,饱和度和色调,如下所示:

*备忘录:

  • 初始化的第一个参数是亮度(可选默认:0型:int,float或tuple/tuple/list(int或float)): *备忘录:
    • >是亮度[min,max]的范围,因此必须是min 必须为0 元组/列表必须是具有2个元素的1d。
    • 单个值表示[max(0,1亮度),1 亮度]。
    • 初始化的第二个参数是对比度(可选默认:0型:int,float或tuple/tuple/list(int或float)): *备忘录:
    • 这是对比度[min,max]的范围,因此必须是min 必须为0 元组/列表必须是具有2个元素的1d。
    • 单个值表示[max(0,1-contrast),1 对比]。
        >
      • 初始化的第三个参数是饱和(可选默认:0型:int,float或tuple/tuple/list(int或float)): *备忘录:
      • >是饱和度[min,max]的范围,因此必须是min 必须为0 元组/列表必须是具有2个元素的1d。
      • 单个值表示[max(0,1-饱和),1 饱和]。
    • 初始化的第四个参数是色调(可选默认:0型:float或tuple/list(float)): *备忘录:
      • >这是色调的范围[min,max],因此必须是min >必须为-0.5 元组或列表必须是具有2个元素的1d。
      • 单个值表示[-hue, hue]。
      • >
      • 第一个参数是img(必需类型:pil图像或张量(int)): *备忘录:
    • 张量必须为2d或3d。
    • 不使用img =。
      • 建议根据v1或v2使用v2?我应该使用哪一个?
      • from torchvision.datasets import OxfordIIITPet
        from torchvision.transforms.v2 import ColorJitter
        
        colorjitter = ColorJitter()
        colorjitter = ColorJitter(brightness=0,
                                  contrast=0,
                                  saturation=0,
                                  hue=0)
        colorjitter = transform=ColorJitter(brightness=[1, 1]),
                                            contrast=[1, 1],
                                            saturation=[1, 1],
                                            hue=[0, 0])
        colorjitter
        # ColorJitter()
        
        print(colorjitter.brightness)
        # None
        
        print(colorjitter.contrast)
        # None
        
        print(colorjitter.saturation)
        # None
        
        print(colorjitter.hue)
        # None
        
        origin_data = OxfordIIITPet(
            root="data",
            transform=None
            # transform=ColorJitter()
            # colorjitter = ColorJitter(brightness=0,
            #                           contrast=0,
            #                           saturation=0,
            #                           hue=0)
            # transform=ColorJitter(brightness=[1, 1]),
            #                       contrast=[1, 1],
            #                       saturation=[1, 1],
            #                       hue=[0, 0])
        )
        
        brightp2_data = OxfordIIITPet( # `bright` is brightness and `p` is plus.
            root="data",
            transform=ColorJitter(brightness=2)
            # transform=ColorJitter(brightness=[0, 3])
        )
        
        brightp2p2_data = OxfordIIITPet(
            root="data",
            transform=ColorJitter(brightness=[2, 2])
        )
        
        brightp05p05_data = OxfordIIITPet(
            root="data",
            transform=ColorJitter(brightness=[0.5, 0.5])
        )
        
        contrap2_data = OxfordIIITPet( # `contra` is contrast.
            root="data",
            transform=ColorJitter(contrast=2)
            # transform=ColorJitter(contrast=[0, 3])
        )
        
        contrap2p2_data = OxfordIIITPet(
            root="data",
            transform=ColorJitter(contrast=[2, 2])
        )
        
        contrap05p05_data = OxfordIIITPet(
            root="data",
            transform=ColorJitter(contrast=[0.5, 0.5])
        )
        
        saturap2_data = OxfordIIITPet( # `satura` is saturation.
            root="data",
            transform=ColorJitter(saturation=2)
            # transform=ColorJitter(saturation=[0, 3])
        )
        
        saturap2p2_data = OxfordIIITPet(
            root="data",
            transform=ColorJitter(saturation=[2, 2])
        )
        
        saturap05p05_data = OxfordIIITPet(
            root="data",
            transform=ColorJitter(saturation=[0.5, 0.5])
        )
        
        huep05_data = OxfordIIITPet(
            root="data",
            transform=ColorJitter(hue=0.5)
            # transform=ColorJitter(hue=[-0.5, 0.5])
        )
        
        huep025p025_data = OxfordIIITPet( # `m` is minus.
            root="data",
            transform=ColorJitter(hue=[0.25, 0.25])
        )
        
        huem025m025_data = OxfordIIITPet( # `m` is minus.
            root="data",
            transform=ColorJitter(hue=[-0.25, -0.25])
        )
        
        import matplotlib.pyplot as plt
        
        def show_images1(data, main_title=None):
            plt.figure(figsize=(10, 5))
            plt.suptitle(t=main_title, y=0.8, fontsize=14)
            for i, (im, _) in zip(range(1, 6), data):
                plt.subplot(1, 5, i)
                plt.imshow(X=im)
                plt.xticks(ticks=[])
                plt.yticks(ticks=[])
            plt.tight_layout()
            plt.show()
        
        show_images1(data=origin_data, main_title="origin_data")
        show_images1(data=brightp2_data, main_title="brightp2_data")
        show_images1(data=brightp2p2_data, main_title="brightp2p2_data")
        show_images1(data=brightp05p05_data, main_title="brightp05p05_data")
        print()
        show_images1(data=origin_data, main_title="origin_data")
        show_images1(data=contrap2_data, main_title="contrap2_data")
        show_images1(data=contrap2p2_data, main_title="contrap2p2_data")
        show_images1(data=contrap05p05_data, main_title="contrap05p05_data")
        print()
        show_images1(data=origin_data, main_title="origin_data")
        show_images1(data=saturap2_data, main_title="saturap2_data")
        show_images1(data=saturap2p2_data, main_title="saturap2p2_data")
        show_images1(data=saturap05p05_data, main_title="saturap05p05_data")
        print()
        show_images1(data=origin_data, main_title="origin_data")
        show_images1(data=huep05_data, main_title="huep05_data")
        show_images1(data=huep025p025_data, main_title="huep025p025_data")
        show_images1(data=huem025m025_data, main_title="huem025m025_data")
        
        # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
        def show_images2(data, main_title=None, b=0, c=0, s=0, h=0):
            plt.figure(figsize=(10, 5))
            plt.suptitle(t=main_title, y=0.8, fontsize=14)
            for i, (im, _) in zip(range(1, 6), data):
                plt.subplot(1, 5, i)
                cj = ColorJitter(brightness=b, contrast=c, # Here
                                 saturation=s, hue=h)
                plt.imshow(X=cj(im)) # Here
                plt.xticks(ticks=[])
                plt.yticks(ticks=[])
            plt.tight_layout()
            plt.show()
        
        show_images2(data=my_data, main_title="origin_data")
        show_images2(data=my_data, main_title="brightp2_data", b=2)
        show_images2(data=my_data, main_title="brightp2p2_data", b=[2, 2])
        show_images2(data=my_data, main_title="brightp05p05_data", b=[0.5, 0.5])
        print()
        show_images2(data=my_data, main_title="origin_data")
        show_images2(data=my_data, main_title="contrap2_data", c=2)
        show_images2(data=my_data, main_title="contrap2p2_data", c=[2, 2])
        show_images2(data=my_data, main_title="contrap05p05_data", c=[0.5, 0.5])
        print()
        show_images2(data=my_data, main_title="origin_data")
        show_images2(data=my_data, main_title="saturap2_data", s=2)
        show_images2(data=my_data, main_title="saturap2p2_data", s=[2, 2])
        show_images2(data=my_data, main_title="saturap05p05_data", s=[0.5, 0.5])
        print()
        show_images2(data=my_data, main_title="origin_data")
        show_images2(data=my_data, main_title="huep05_data", h=0.5)
        show_images2(data=my_data, main_title="huep025p025_data", h=[0.25, 0.25])
        show_images2(data=my_data, main_title="huem025m025_data", h=[-0.25, -0.25])
        

    image description

    image description

    image description

    image description

    image description

    image description

    image description

    image description

    image description

    image description

    image description

    image description

以上就是pytorch的colorjitter的详细内容,更多请关注知识资源分享宝库其它相关文章!

发表评论

访客

◎欢迎参与讨论,请在这里发表您的看法和观点。